Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

نویسندگان

  • Linda El Alaoui
  • Alexandre Ern
چکیده

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation of Darcy flows through heterogeneous porous media. Mathematics Subject Classification. 65N15, 65N60, 75N12, 76905. Received June 22, 2003.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unifying theory of a posteriori finite element error control

Residual-based a posteriori error estimates are derived within a unified setting for lowest-order conforming, nonconforming, and mixed finite element schemes. The various residuals are identified for all techniques and problems as the operator norm ‖`‖ of a linear functional of the form

متن کامل

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

A posteriori error estimates for the nonconforming P1 element are easily determined by the hypercircle method via Marini’s observation on the relation to the mixed method of Raviart–Thomas. Another tool is Ainsworth’s application of the hypercircle method to mixed methods. The relation on the finite element solutions is also extended to an a priori relation of the errors, and the errors of four...

متن کامل

A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles

The a posteriori error analysis of conforming finite element discretisations of the biharmonic problem for plates is well established, but nonconforming discretisations are more easy to implement in practice. The a posteriori error analysis for the Morley plate element appears very particular because two edge contributions from an integration by parts vanish simultaneously. This miracle does no...

متن کامل

Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements

This paper establishes a unified framework for the a posteriori error analysis of a large class of nonconforming finite element methods. The theory assures reliability and efficiency of explicit residual error estimates up to data oscillations under the conditions (H1)-(H2) and applies to several nonconforming finite elements: the Crouzeix-Raviart triangle element, the Han parallelogram element...

متن کامل

A unifying theory of a posteriori error control for nonconforming finite element methods

Residual-based a posteriori error estimates were derived within one unifying framework for lowest-order conforming, nonconforming, and mixed finite element schemes in [C. Carstensen, Numerische Mathematik 100 (2005) 617-637]. Therein, the key assumption is that the conforming first-order finite element space V c h annulates the linear and bounded residual l written V c h ⊆ ker l. That excludes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004